Chops

GP: 11 | W: 7 | L: 4
GF: 23 | GA: 22 | PP%: 21.43% | PK%: 80.00%
DG: Paolo Mouni | Morale : 50 | Moyenne d'Équipe : 62
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Brian GibbonsX100.00593390864669735751536082587580039710
2Marcus KrugerX100.00643485855770845265495482536976050700
3Adam Gaudette (R)X100.00623390895467685256485557535163050650
4Rocco GrimaldiX100.00553294844364545249475560536066050620
5Cole Bardreau (R)X100.00622580795369455160475562516045046620
6Patrick KaletaX100.00473195836351274541405056508173038590
7Cory ConacherX100.00493394844758324749425355527269038590
8Tobias Lindberg (R)X100.00453095817450254540405055505459050580
9Hudson FaschingX100.00483395836953254544405058505460050580
10Spencer Foo (R)X100.00453095845950254540405055505760050570
11Joe MorrowX100.00664089845866545549545765586372050680
12Cody FransonX100.00563394817762405150525360527876050660
13Jakub KindlX100.00493295846553314650465056507872038610
14Stefan ElliottX100.00463195855851254749465055506666050590
15Tucker Poolman (R)X100.00453195836350254548455055506063050580
Rayé
1John Quenneville (R)X100.00543494846259254648405163505160050590
2Michael Mersch (R)X100.00453095807250254540405055506363050580
3Nicolas Kerdiles (R)X100.00453095836650254540405055505760050570
4Rem Pitlick (R)X100.00453495825955254547405055504856050560
5Chad RuhwedelX100.00713194845462385250495465536974038660
6Egor YakovlevX100.00493195855656295149505356526668038610
MOYENNE D'ÉQUIPE100.0053329383605838494845526052636604661
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pheonix Copley100.0075367676747376757468606163040710
2Troy Grosenick (R)100.0060256571646060606065557359037580
Rayé
1Jeff Glass100.0065277677636666656565568970045630
MOYENNE D'ÉQUIPE100.006729727567666767666657746404164
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Bob Murray79788181727260CAN6411,500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Adam GaudetteChops (BUF)C116814480232650143012.00%823121.0734710310002102060.26%312143001.2100000121
2Brian GibbonsChops (BUF)LW116713410020166219379.68%724222.073366310000220362.00%503210001.0700000112
3Marcus KrugerChops (BUF)LW11235-42023133917195.13%320318.541124260000262033.33%9138000.4900000001
4Patrick KaletaChops (BUF)RW11224500910106920.00%421519.58112130000000057.89%1921000.3700000000
5Joe MorrowChops (BUF)D1103304025133417130.00%1931428.55022433000225000.00%01925000.1900000001
6Tucker PoolmanChops (BUF)D11033320394350.00%915914.540000000004000.00%0213000.3800000001
7Cody FransonChops (BUF)D11112020171718975.56%2131028.25112333000023010.00%0917000.1300000000
8Cory ConacherChops (BUF)C11112-300121019985.26%114212.9400015000081058.44%7743000.2800000010
9Chad RuhwedelChops (BUF)D2011-100704220.00%45427.330000900005000.00%024000.3700000000
10Jakub KindlChops (BUF)D11011-5005619550.00%1425022.75000126000022000.00%0720000.0800000000
11Tobias LindbergChops (BUF)RW11101-30069105610.00%417215.71000025000000050.00%812000.1200000000
12Michael MerschChops (BUF)LW71011004619885.26%310815.45000000000110062.50%8115000.1800000000
13Rocco GrimaldiChops (BUF)LW11101-200752311164.35%313111.96000000004151066.67%678000.1500000001
14Cole BardreauChops (BUF)C11101-418019203210123.12%717616.05000326000000063.87%155107000.1100000000
15Stefan ElliottChops (BUF)D110002004211160.00%816314.850000200000000.00%0217000.0000000000
16Spencer FooChops (BUF)RW9000000762710170.00%111412.71000000000000100.00%2115000.0000000000
17Hudson FaschingChops (BUF)RW11000-2209712370.00%411310.3400000000000075.00%422000.0000000000
Stats d'équipe Total ou en Moyenne172223052-54802001753931492075.60%120310618.06912213328400081796460.77%650148150000.3300000247
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleyChops (BUF)117220.9411.817310022370212200.0000110322
Stats d'équipe Total ou en Moyenne117220.9411.817310022370212200.0000110322


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Adam GaudetteChops (BUF)C231996-01-01Yes170 Lbs6 ft1NoNoNo4Pro & Farm800,000$0$0$No800,000$800,000$800,000$Lien NHL
Brian GibbonsChops (BUF)LW311988-01-01No175 Lbs5 ft8NoNoNo2Pro & Farm950,000$0$0$No950,000$Lien NHL
Chad RuhwedelChops (BUF)D291990-01-01No191 Lbs5 ft11NoNoNo4Pro & Farm800,000$0$0$No800,000$800,000$800,000$Lien / Lien NHL
Cody FransonChops (BUF)D321987-01-01No224 Lbs6 ft5NoNoNo1Pro & Farm600,000$0$0$NoLien / Lien NHL
Cole BardreauChops (BUF)C261993-01-01 01:50:17Yes185 Lbs5 ft10NoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$
Cory ConacherChops (BUF)C301989-01-01No180 Lbs5 ft8NoNoNo1Pro & Farm700,000$0$0$NoLien NHL
Egor YakovlevChops (BUF)D281991-01-01No190 Lbs6 ft0NoNoNo1Pro & Farm600,000$0$0$NoLien
Hudson FaschingChops (BUF)RW241995-01-01No204 Lbs6 ft3NoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Lien NHL
Jakub KindlChops (BUF)D321987-01-01No199 Lbs6 ft3NoNoNo1Pro & Farm600,000$0$0$NoLien
Jeff GlassChops (BUF)G341985-01-01No206 Lbs6 ft3NoNoNo2Pro & Farm750,000$0$0$No750,000$Lien NHL
Joe MorrowChops (BUF)D271992-01-01No196 Lbs6 ft0NoNoNo2Pro & Farm800,000$0$0$No800,000$Lien / Lien NHL
John QuennevilleChops (BUF)C231996-01-01Yes195 Lbs6 ft1NoNoNo4Pro & Farm700,000$0$0$No700,000$700,000$700,000$Lien NHL
Marcus KrugerChops (BUF)LW291990-01-01No186 Lbs6 ft0NoNoNo1Pro & Farm800,000$0$0$NoLien NHL
Michael MerschChops (BUF)LW271992-01-01Yes218 Lbs6 ft2NoNoNo1Pro & Farm600,000$0$0$No
Nicolas KerdilesChops (BUF)LW251994-01-01Yes200 Lbs6 ft2NoNoNo2Pro & Farm700,000$0$0$No700,000$Lien NHL
Patrick KaletaChops (BUF)RW331986-01-01No198 Lbs6 ft1NoNoNo1Pro & Farm900,000$0$0$No
Pheonix CopleyChops (BUF)G271992-01-01No200 Lbs6 ft4NoNoNo4Pro & Farm850,000$0$0$No850,000$850,000$850,000$
Rem PitlickChops (BUF)C221997-01-01Yes196 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$
Rocco GrimaldiChops (BUF)LW261993-01-01No180 Lbs5 ft6NoNoNo4Pro & Farm800,000$0$0$No800,000$800,000$800,000$Lien NHL
Spencer FooChops (BUF)RW251994-01-01Yes190 Lbs6 ft0NoNoNo2Pro & Farm550,000$0$0$No550,000$Lien NHL
Stefan ElliottChops (BUF)D281991-01-01No190 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$NoLien
Tobias LindbergChops (BUF)RW241995-01-01Yes217 Lbs6 ft3NoNoNo1Pro & Farm600,000$0$0$No
Troy GrosenickChops (BUF)G301989-01-01Yes185 Lbs6 ft1NoNoNo1Pro & Farm600,000$0$0$No
Tucker PoolmanChops (BUF)D261993-01-01Yes199 Lbs6 ft2NoNoNo4Pro & Farm700,000$0$0$No700,000$700,000$700,000$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2427.54195 Lbs6 ft12.17710,417$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brian GibbonsAdam GaudettePatrick Kaleta40122
2Marcus KrugerCole BardreauTobias Lindberg30122
3Rocco GrimaldiCory ConacherHudson Fasching20122
4Spencer Foo10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe MorrowCody Franson40122
2Jakub Kindl30122
3Stefan ElliottTucker Poolman20122
4Joe MorrowCody Franson10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Brian GibbonsAdam GaudettePatrick Kaleta60122
2Marcus KrugerCole BardreauTobias Lindberg40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe MorrowCody Franson60122
2Jakub Kindl40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Brian GibbonsMarcus Kruger60122
2Adam GaudetteRocco Grimaldi40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe MorrowCody Franson60122
2Jakub Kindl40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Brian Gibbons60122Joe MorrowCody Franson60122
2Marcus Kruger40122Jakub Kindl40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Brian GibbonsMarcus Kruger60122
2Adam GaudetteRocco Grimaldi40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Joe MorrowCody Franson60122
2Jakub Kindl40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brian GibbonsAdam GaudettePatrick KaletaJoe MorrowCody Franson
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Brian GibbonsAdam GaudettePatrick KaletaJoe MorrowCody Franson
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Cory Conacher, , Cory Conacher,
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Stefan Elliott, Tucker Poolman, Stefan ElliottTucker Poolman,
Tirs de Pénalité
Brian Gibbons, Marcus Kruger, Adam Gaudette, Rocco Grimaldi, Cole Bardreau
Gardien
#1 : Pheonix Copley, #2 : Troy Grosenick


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Heat 734000001215-33120000067-14220000068-260.42912152700281032459816011839217743613422418.18%18383.33%016829856.38%14223560.43%9715064.67%267152254107209107
2Rapido440000001174220000006422200000053281.0001115260028103170981601183915358249820525.00%12375.00%016829856.38%14223560.43%9715064.67%267152254107209107
Total1174000002322153200000121116420000011110140.636233053002810341598160118393701326023242921.43%30680.00%016829856.38%14223560.43%9715064.67%267152254107209107
_Since Last GM Reset1174000002322153200000121116420000011110140.636233053002810341598160118393701326023242921.43%30680.00%016829856.38%14223560.43%9715064.67%267152254107209107
_Vs Conference1174000002322153200000121116420000011110140.636233053002810341598160118393701326023242921.43%30680.00%016829856.38%14223560.43%9715064.67%267152254107209107

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
1114L12330534153701326023200
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
117400002322
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
53200001211
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
64200001111
Derniers 10 Matchs
WLOTWOTL SOWSOL
620200
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
42921.43%30680.00%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
981601183928103
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
16829856.38%14223560.43%9715064.67%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
267152254107209107


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-01-098Chops3Rapido2WXSommaire du Match
2 - 2020-01-1016Chops2Rapido1WXSommaire du Match
3 - 2020-01-1124Rapido2Chops3WSommaire du Match
4 - 2020-01-1232Rapido2Chops3WXSommaire du Match
8 - 2020-01-1659Chops3Heat 2WSommaire du Match
9 - 2020-01-1763Chops0Heat 2LSommaire du Match
10 - 2020-01-1867Heat 1Chops2WSommaire du Match
11 - 2020-01-1971Heat 3Chops2LXSommaire du Match
12 - 2020-01-2075Chops2Heat 1WSommaire du Match
13 - 2020-01-2179Heat 3Chops2LXSommaire du Match
14 - 2020-01-2283Chops1Heat 3LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance10,0005,000
Assistance PCT100.00%100.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
36 3000 - 100.00% 97,750$488,750$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 1,705,000$ 1,705,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
1178214102554234270-3639141900033118122-43972202521116148-324223436760113398999112410664784924662616820477125630314447.52%23910854.81%2756162246.61%617147441.86%527117045.04%155883417297171452752
1282323504443249254-541171602132136128841151902311113126-13642493996482134981091328228181020951682595888595143327414452.55%27611757.61%3852179647.44%669155842.94%582124546.75%1756100817297431481741
1382333604234252262-1041171901013134130441161703221118132-146625240065222449810382572749911884462564828579135230313745.21%28613154.20%4862174149.51%708149147.48%625122750.94%172999717677571476721
1482333105157217209841171501044105102341161604113112107566217332549224182841628428071042970592566870481155728911439.45%2387966.81%1935197147.44%803164048.96%586116550.30%1755101817857511443713
1582334004122251315-6441201802001131149-1841132202121120166-466625143668711448611572611661990938332700890676118827913849.46%33118344.71%4695165541.99%638154941.19%599135844.11%1715104718607631377626
1682243908515252300-4841102304112125161-3641141604403127139-124825243568711219812413248262991791144242683458697028413948.94%29112258.08%3781157849.49%622131147.44%690139749.39%1725105718557701390623
1782323202619275275041161602304143135841161600315132140-8642754727474044109119827357089681015732657937515140332916951.37%24613246.34%2777179243.36%675152644.23%560132442.30%1709101418397771442682
1882235202104218324-1064192701103108163-5541142501001110161-51462184006182028989072504741843911262447847811108327610236.96%39020347.95%4634164038.66%544144537.65%553138839.84%1735109718417991369580
1982392608531263217464118150232111499154121110621014911831782634407031329101122142703765895999552366823522136129814648.99%25811655.04%8817173946.98%704146947.92%598124747.96%1785106817547491431693
Total Saison Régulière73427033203930243922112426-2153671381680159142311141189-7536713216402421101610971237-140540221136815892161332485996597236816542837085034702293777375242116032635123346.79%2555119153.39%3171091553445.76%59801346344.42%53201152146.18%154699146161646828128646134
Séries
14514000001120-921100000710-330300000410-62112031000821155286164219673327412541.67%161131.25%04910944.95%5511149.55%377152.11%8948124478742
19117400000232215320000012111642000001111014233053002810341598160118393701326023242921.43%30680.00%016829856.38%14223560.43%9715064.67%267152254107209107
19117400000232215320000012111642000001111014233053002810341598160118393701326023242921.43%30680.00%016829856.38%14223560.43%9715064.67%267152254107209107
Total Séries271512000005764-71275000003132-11587000002632-63057801370042422798522438130080936337152538962323.96%762369.74%038570554.61%33958158.35%23137162.26%623353633262506257