Sea Dogs

GP: 11 | W: 5 | L: 6
GF: 31 | GA: 31 | PP%: 32.61% | PK%: 56.82%
DG: Kevin Gagnon | Morale : 50 | Moyenne d'Équipe : 65
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nolan PatrickX100.00703785866577886376616568714566050740
2Michael Rasmussen (R) (A)X100.00814083838170755748536063574264050710
3Filip Chytil (R)X100.00553592836976915750526159584259050690
4Cody McLeodX100.00967573836762594751425258518785050670
5Alexandre Burrows (C)X100.00573591846363575146465565559685050670
6Joey Anderson (R)X100.00733492845764415248465876564565050660
7Chris StewartX100.00574492778060525045455657617875050650
8Johan Franzen (A)X100.00503295798154264842455155519983046630
9Clarke MacArthurX100.00523195845954285143475455538477050620
10Erik ColeX100.00483095836852294741415256519982046620
11Nathan HortonX100.00503795797653254841435256538475050610
12Korbinian HolzerX100.00893492827166305451525587537585044740
13Christian Jaros (R)X100.00893785856568745448565268515170045710
14Filip Hronek (R)X100.00673289894968566248636062574866050690
15Dalton ProutX100.00583693827063285049485263516971050640
16Bogdan KiselevichX100.00593294836058365049525060506971050630
17Taylor ChorneyX100.00493295845757274850475160517873045620
18Jakub JerabekX100.00523195835760345149485258526668050620
Rayé
1Maxim MaminX100.00553895826858284648415258515461050600
2Justin Kloos (R)X100.00463395854855254548405060506063050570
3Brandon Gignac (R)X100.00453395875055254547405059504856050570
4Petter GranbergX100.00473295846551254649455056506365050590
MOYENNE D'ÉQUIPE100.0061369183656144514948546254677104965
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Antti Niemi100.007939817876777979786965978308762
2Richard Bachman100.0070255868766667707365578167049660
Rayé
1Andrew Hammond100.0068277979646971686765577765055650
2Eric Comrie (R)100.0070256168776367717465574951050650
3Anders Lindback100.0062268681566262626266567763050600
MOYENNE D'ÉQUIPE100.007028737570676970716658766604266
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Scott Gordon74787982757469USA552500,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'ÉquipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Michael RasmussenSea Dogs (MTL)C11391216021272581412.00%920418.602573250001280149.66%1471610001.1700000220
2Joey AndersonSea Dogs (MTL)RW1183110207113371324.24%1517215.64426625000001050.00%898011.2800000101
3Nolan PatrickSea Dogs (MTL)C11459110016245317407.55%1023821.663367360000261164.89%3561410000.7600000100
4Clarke MacArthurSea Dogs (MTL)LW115273208122041025.00%517015.502133160001100050.00%1254000.8200000010
5Christian JarosSea Dogs (MTL)D11156460221717785.88%3429927.25145435000028100.00%0520000.4000000101
6Alexandre BurrowsSea Dogs (MTL)RW11336060693112279.68%520418.58224436000001050.00%20137000.5900000001
7Cody McLeodSea Dogs (MTL)LW1114502401916161096.25%1222020.08022336000080056.52%23143000.4500000000
8Filip HronekSea Dogs (MTL)D9044440811179100.00%1220122.38022318000121000.00%01113000.4000000010
9Filip ChytilSea Dogs (MTL)C110441601211347180.00%514313.07000000001150060.61%6686000.5600000000
10Jakub JerabekSea Dogs (MTL)D11123-12076106510.00%815113.811121400002000.00%0411000.3900000100
11Dalton ProutSea Dogs (MTL)D9033200495460.00%1018120.22022016000016000.00%008000.3300000000
12Johan FranzenSea Dogs (MTL)RW1121320054228119.09%11049.5100000000001050.00%282000.5700000001
13Chris StewartSea Dogs (MTL)RW1111216051014547.14%512811.7000002000000166.67%944000.3100000000
14Maxim MaminSea Dogs (MTL)C9022200662420.00%1798.8500000000020050.00%2422000.5000000000
15Taylor ChorneySea Dogs (MTL)D11101-10071272514.29%914613.300000200006000.00%026000.1400000000
16Korbinian HolzerSea Dogs (MTL)D4011-100775250.00%108020.030110800006000.00%018000.2500000001
17Erik ColeSea Dogs (MTL)LW11011-22057153100.00%615113.8001128000080072.73%1135000.1300000000
18Nathan HortonSea Dogs (MTL)LW9011200454360.00%3758.4400000000000050.00%402000.2600000000
19Bogdan KiselevichSea Dogs (MTL)D4000000360120.00%48120.310000900005000.00%008000.0000000000
Stats d'équipe Total ou en Moyenne187305181187601722103301192059.09%164303816.251526413628300041885359.53%682119137010.5300000645
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Antti NiemiSea Dogs (MTL)94320.9262.545440023309143100.000090030
Stats d'équipe Total ou en Moyenne94320.9262.545440023309143100.000090030


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur Nom de l'ÉquipePOS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Disponible pour Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantCap Salariale Cap Salariale Restant Exclus du Cap Salarial Salaire Année 2Salaire Année 3Salaire Année 4Salaire Année 5Salaire Année 6Salaire Année 7Salaire Année 8Salaire Année 9Salaire Année 10Link
Alexandre BurrowsSea Dogs (MTL)RW381981-01-01No197 Lbs6 ft1NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$
Anders LindbackSea Dogs (MTL)G311988-01-01No215 Lbs6 ft6NoNoNo1Pro & Farm800,000$0$0$No
Andrew HammondSea Dogs (MTL)G311988-01-01No215 Lbs6 ft2NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien NHL
Antti Niemi (Contrat à 1 Volet)Sea Dogs (MTL)G361983-01-01No209 Lbs6 ft2NoNoNo2Farm Only1,800,000$180,000$0$No1,800,000$Lien NHL
Bogdan KiselevichSea Dogs (MTL)D291990-01-01No202 Lbs6 ft0NoNoNo3Pro & Farm800,000$0$0$No800,000$800,000$Lien
Brandon GignacSea Dogs (MTL)C221997-01-01Yes170 Lbs5 ft11NoNoNo2Pro & Farm650,000$0$0$No650,000$
Chris StewartSea Dogs (MTL)RW321987-01-01No242 Lbs6 ft2NoNoNo2Pro & Farm1,500,000$0$0$No1,500,000$Lien NHL
Christian JarosSea Dogs (MTL)D231996-01-01Yes201 Lbs6 ft3NoNoNo3Pro & Farm850,000$0$0$No850,000$850,000$Lien / Lien NHL
Clarke MacArthurSea Dogs (MTL)LW341985-01-01No192 Lbs6 ft0NoNoNo2Pro & Farm1,900,000$0$0$No1,900,000$
Cody McLeodSea Dogs (MTL)LW351984-01-01No204 Lbs6 ft2NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien NHL
Dalton ProutSea Dogs (MTL)D291990-01-01No215 Lbs6 ft3NoNoNo4Pro & Farm900,000$0$0$No900,000$900,000$900,000$Lien / Lien NHL
Eric ComrieSea Dogs (MTL)G241995-01-01Yes175 Lbs6 ft1NoNoNo1Pro & Farm1,000,000$0$0$NoLien NHL
Erik ColeSea Dogs (MTL)LW411978-01-01No205 Lbs6 ft2NoNoNo1Pro & Farm600,000$0$0$No
Filip ChytilSea Dogs (MTL)C201999-01-01Yes208 Lbs6 ft2NoNoNo1Pro & Farm800,000$0$0$NoLien NHL
Filip HronekSea Dogs (MTL)D221997-01-01Yes170 Lbs6 ft0NoNoNo1Pro & Farm750,000$0$0$NoLien
Jakub JerabekSea Dogs (MTL)D281991-01-01No199 Lbs5 ft11NoNoNo3Pro & Farm700,000$0$0$No700,000$700,000$Lien / Lien NHL
Joey AndersonSea Dogs (MTL)RW211998-01-01Yes190 Lbs5 ft11NoNoNo2Pro & Farm700,000$0$0$No700,000$
Johan FranzenSea Dogs (MTL)RW401979-01-01No232 Lbs6 ft4NoNoNo1Pro & Farm600,000$0$0$No
Justin KloosSea Dogs (MTL)C261993-01-01Yes175 Lbs5 ft9NoNoNo4Pro & Farm600,000$0$0$No600,000$600,000$600,000$Lien NHL
Korbinian HolzerSea Dogs (MTL)D311988-01-01No218 Lbs6 ft3NoNoNo2Pro & Farm1,000,000$0$0$No1,000,000$Lien / Lien NHL
Maxim MaminSea Dogs (MTL)C241995-01-01No206 Lbs6 ft2NoNoNo4Pro & Farm550,000$0$0$No550,000$550,000$550,000$Lien NHL
Michael RasmussenSea Dogs (MTL)C201999-01-01Yes221 Lbs6 ft6NoNoNo3Pro & Farm850,000$0$0$No850,000$850,000$
Nathan HortonSea Dogs (MTL)LW341985-01-01No229 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$0$0$No
Nolan PatrickSea Dogs (MTL)C211998-01-01No198 Lbs6 ft2NoNoNo1Pro & Farm850,000$0$0$NoLien NHL
Petter GranbergSea Dogs (MTL)D271992-01-01No200 Lbs6 ft3NoNoNo1Pro & Farm800,000$0$0$NoLien
Richard BachmanSea Dogs (MTL)G321987-01-01No183 Lbs5 ft10NoNoNo4Pro & Farm800,000$0$0$No800,000$800,000$800,000$
Taylor ChorneySea Dogs (MTL)D321987-01-01No191 Lbs6 ft0NoNoNo3Pro & Farm650,000$0$0$No650,000$650,000$Lien / Lien NHL
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2729.00202 Lbs6 ft12.33888,889$



Attaque à 5 contre 5
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Cody McLeodNolan PatrickAlexandre Burrows40122
2Clarke MacArthurMichael RasmussenJoey Anderson30122
3Erik ColeFilip ChytilChris Stewart20122
4Nathan HortonJohan Franzen10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Korbinian HolzerChristian Jaros40122
2Dalton ProutBogdan Kiselevich30122
3Taylor ChorneyJakub Jerabek20122
4Korbinian HolzerChristian Jaros10122
Attaque en Avantage Numérique
Ligne #Ailier GaucheCentreAilier Droit% TempsPHYDFOF
1Cody McLeodNolan PatrickAlexandre Burrows60122
2Clarke MacArthurMichael RasmussenJoey Anderson40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Korbinian HolzerChristian Jaros60122
2Dalton ProutBogdan Kiselevich40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Nolan PatrickMichael Rasmussen60122
2Filip ChytilCody McLeod40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Korbinian HolzerChristian Jaros60122
2Dalton ProutBogdan Kiselevich40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Nolan Patrick60122Korbinian HolzerChristian Jaros60122
2Michael Rasmussen40122Dalton ProutBogdan Kiselevich40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Nolan PatrickMichael Rasmussen60122
2Filip ChytilCody McLeod40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Korbinian HolzerChristian Jaros60122
2Dalton ProutBogdan Kiselevich40122
Attaque Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Cody McLeodNolan PatrickAlexandre BurrowsKorbinian HolzerChristian Jaros
Défense Dernière Minute
Ailier GaucheCentreAilier DroitDéfenseDéfense
Cody McLeodNolan PatrickAlexandre BurrowsKorbinian HolzerChristian Jaros
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Chris Stewart, Johan Franzen, Erik ColeChris Stewart, Johan FranzenErik Cole
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Taylor Chorney, Jakub Jerabek, Dalton ProutTaylor ChorneyJakub Jerabek, Dalton Prout
Tirs de Pénalité
Nolan Patrick, Michael Rasmussen, Filip Chytil, Cody McLeod, Alexandre Burrows
Gardien
#1 : Antti Niemi, #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
LigueDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1National642000002220231200000811-333000000149580.667223860002141411819811212152421125693271140.74%281353.57%013322259.91%15728455.28%12018265.93%2261302579618293
2Phantoms 51400000911-23030000058-32110000043120.200914230021414115598112121514260328419421.05%16662.50%013322259.91%15728455.28%12018265.93%2261302579618293
Total11560000031310615000001319-65410000018126100.4553152830021414133698112121538417288177461532.61%441956.82%013322259.91%15728455.28%12018265.93%2261302579618293
_Since Last GM Reset11560000031310615000001319-65410000018126100.4553152830021414133698112121538417288177461532.61%441956.82%013322259.91%15728455.28%12018265.93%2261302579618293
_Vs Conference11560000031310615000001319-65410000018126100.4553152830021414133698112121538417288177461532.61%441956.82%013322259.91%15728455.28%12018265.93%2261302579618293
_Vs Division11140000031310603000001319-6511000001812620.0913152830021414133698112121538417288177461532.61%441956.82%013322259.91%15728455.28%12018265.93%2261302579618293

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
1110L13152833363841728817700
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
115600003131
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
61500001319
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
54100001812
Derniers 10 Matchs
WLOTWOTL SOWSOL
440200
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
461532.61%441956.82%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
981121215214141
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
13322259.91%15728455.28%12018265.93%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
2261302579618293


Derniers Match Joués
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe Visiteuse Score Équipe Locale Score ST OT SO RI Lien
1 - 2020-01-093National2Sea Dogs5WSommaire du Match
2 - 2020-01-1011National6Sea Dogs1LSommaire du Match
3 - 2020-01-1119Sea Dogs3National2WSommaire du Match
4 - 2020-01-1227Sea Dogs6National3WSommaire du Match
5 - 2020-01-1335National3Sea Dogs2LSommaire du Match
6 - 2020-01-1443Sea Dogs5National4WXSommaire du Match
8 - 2020-01-1658Phantoms 3Sea Dogs2LXSommaire du Match
9 - 2020-01-1762Phantoms 3Sea Dogs2LSommaire du Match
10 - 2020-01-1866Sea Dogs3Phantoms 1WSommaire du Match
11 - 2020-01-1970Sea Dogs1Phantoms 2LXSommaire du Match
12 - 2020-01-2074Phantoms 2Sea Dogs1LSommaire du Match



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets4020
Assistance10,5775,278
Assistance PCT88.14%87.97%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
35 2643 - 88.08% 101,323$607,936$3000100

Dépenses
Dépenses Annuelles à Ce JourSalaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
0$ 2,220,000$ 2,220,000$ 0$
Cap Salarial Par JourCap salarial à ce jourJoueurs Inclut dans la Cap SalarialeJoueurs Exclut dans la Cap Salariale
0$ 0$ 0 0

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison Régulière
11784320042452551758039221102013122843839219022321339142862554166716426100121142582699943917602351804593166032113241.12%2728369.49%5893173051.62%836173148.30%592112052.86%171296416296911395728
1282323501086251246541161800052122126-4411617010341291209642514016522339104991727157691043884652695860607171828312744.88%28511858.60%5909184449.30%841169549.62%606121349.96%1775101417497441466732
1382323402266267245224115190112312612604117150114314111922642674316982438114107182722769980943782783935525167629115051.55%26211257.25%1967167957.59%937175153.51%739129257.20%175698917527391482749
1482411701481124117368412450125414489554117120023797841382241355596054193981527027079849701212568884584180329012844.14%2778868.23%4944184951.05%921191448.12%614112954.38%175997117737591495761
1582351801046926418282411880405612687394117100641313895437026441868201037115962327217509809281132487895496162530712440.39%2299458.95%1927169754.63%959172555.59%652112557.96%1809103417477311476765
16824818022392731799441219022161238835412790002315091599627343370613461041181226767431017868922502754572167934415143.90%2557570.59%41036177258.47%954170855.85%708118859.60%1829103617216951435775
1782362304496285229564118120233313611323411811021631491163372285470755003512511219281876910129891022591923557159133417853.29%26310460.46%5913180650.55%870170551.03%658128151.37%1840108117377271440733
188252160146328318110241278002311399247412580123214489551042834447271539112125142707758940986522525835557165434114542.52%2649165.53%2963168857.05%957170356.19%673120555.85%1824103817057031450769
1982372402568242197454119120133312497274118120123511810018742423666081429100105202637707962936842392820604171130312039.60%2778868.23%10919167854.77%909163455.63%694117059.32%1799100617047351500780
Total Saison Régulière73435620502727566323611807554367180102013132831116290226036717610301414283211999052947122361373460951338330967981152242806671886184217672289477105095151172814125544.60%238485364.22%3784711574353.81%81841556652.58%59361072355.36%161089138155226528131426798
Séries
111477000002829-1835000001619-3642000001210214284674005810541811513614027418136124302411331.71%621969.35%016630654.25%18735852.23%8317647.16%300156312147290145
1211650000026251514000001014-465100000161151226436901212102358711391301835513152252371437.84%27677.78%110726340.68%9723740.93%5814440.28%230124255113213102
13514000001113-22020000035-2312000008802111728004340203417782318151389418422.22%19668.42%05413938.85%4311537.39%316646.97%10659114509444
142416800000695613128400000332851284000003628832691091780072533477817027829139807284160549672435.82%802667.50%025352648.10%31161050.98%18233354.65%509278531230452226
15178900000514929630000032248826000001925-61651801311091623352114017918913564187111334512447.06%552063.64%116230453.29%18435551.83%11123946.44%363202377154306158
16178900000514929630000032248826000001925-61651801311091623352114017918913564187111334512447.06%552063.64%116230453.29%18435551.83%11123946.44%363202377154306158
1716970000035341945000001921-2752000001613318356297116121254301231671241642316596343581932.76%481862.50%016634348.40%14131844.34%11722252.70%340180322156322161
18261610000006561414113000004128131257000002433-932651051700382926284925426732087372381464991053230.48%752369.33%031257853.98%29052854.92%21636559.18%580333536230454237
1911560000031310615000001319-65410000018126103152830021414133698112121538417288177461532.61%441956.82%013322259.91%15728455.28%12018265.93%2261302579618293
1911560000031310615000001319-65410000018126103152830021414133698112121538417288177461532.61%441956.82%013322259.91%15728455.28%12018265.93%2261302579618293
Total Séries15281710000039837820804139000002122011172403200000186177916239864610443554149169264750125016461707147481717231014306152018435.38%50917665.42%31648320751.39%1751344450.84%1149214853.49%324818003342143028051420